
Introduction to Functions

Functions by Intuition...

def celsius_to_fahrenheit(degrees: int) -> float:
"""Convert degree Celsius to degrees Fahrenheit."""
return (degrees * 9 / 5) + 32

Consider the following Function Definition, which is a new concept to you...

celsius_to_fahrenheit(degrees=0)

celsius_to_fahrenheit(degrees=10)

Now consider the following Function Call Expressions, which use the definition...

What value and type does each function call expression evaluate to? How many
connections between the definition and the call can you identify intuitively?

Follow-along in VSCode

Functions and the Fundamental Pattern

Algorithm

celsius_to_fahrenheit

float
degrees:

int

celsius_to_fahrenheit(degrees=10)

10 50.0

50.0

A

B

C

D

F

Key for Notes
A. Function Definition Established

... later ...
B. Function Call Expression Evaluation Begins
C. Argument 10 given as input to degrees parameter
D. The celsius_to_fahrenheit "algorithm" evaluates
E. The function call returns a value of 50.0
F. Function Call Expression (B) results in a float value

of 50.0

E

Function Definitions are like Recipes
• A recipe in a book does not result in a meal until you cook it.

• A function definition in your program does result in a value until you call it.

• An adaptable recipe is one where you can substitute ingredients, follow the same
steps, and get different, but intentional, results. Such as blueberry biscuits, cinnamon
biscuits, sage biscuits, and so on.

• A parameterized function definition is one where you can substitute input
arguments, follow the same steps, and get different, but intentional, results. Such as
converting different Celsius degree values to Fahrenheit degree values.

• Recipes and function definitions are written down once with dreams of being
cooked and called tens, hundreds, thousands, ... billions of times over!

The Anatomy of a Function Definition

def name_of_function(parameter: type) -> returnType:
"""Docstring description of function for people"""
return expression_of_type_returnType

Function Definition Signature

def name_of_function(parameter: type) -> returnType:
"""Docstring description of function for people"""
return expression_of_type_returnType

The signature of a function definition specifies how you and others will make use of the
function from elsewhere in a program:

What is its name?

What input parameter(s) type(s) does it need? (Think: ingredients...)

What type of return value will calling it result in? (Think: biscuits)

Function Definition Body or Implementation
def name_of_function(parameter: type) -> returnType:

"""Docstring description of function for people"""
return expression_of_type_returnType

The body or implementation a function definition specifies the subprogram, or set of steps, which will
be carried out every time a function calls the definition:

Each statement in the body is indented by one-level to visually denote it.

The Docstring describes the purpose and, often, usage of a function for people

The function body then contains one-or-more statements. For now, our definitions will be simple,
one-statement functions.

Return statements are special and written inside of function definitions, when a function definition
is called, a return statement indicates "stop following this function right here and send my caller
the result of evaluating this return expression!"

